If area of quadrilateral formed by tangents drawn at ends of latus rectum of hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$ is equal to square of distance between centre and one focus of hyperbola, then $e^3$ is ($e$ is eccentricity of hyperbola)
$2\sqrt 2$
$2$
$3$
$8$
A common tangent $T$ to the curves $C_{1}: \frac{x^{2}}{4}+\frac{y^{2}}{9}=1$ and $C_{2}: \frac{x^{2}}{42}-\frac{y^{2}}{143}=1$ does not pass through the fourth quadrant. If $T$ touches $C _{1}$ at ( $\left.x _{1}, y _{1}\right)$ and $C _{2}$ at $\left( x _{2}, y _{2}\right)$, then $\left|2 x _{1}+ x _{2}\right|$ is equal to $......$
Locus of the middle points of the parallel chords with gradient $m$ of the rectangular hyperbola $xy = c^2 $ is
Let the equation of two diameters of a circle $x ^{2}+ y ^{2}$ $-2 x +2 fy +1=0$ be $2 px - y =1$ and $2 x + py =4 p$. Then the slope $m \in(0, \infty)$ of the tangent to the hyperbola $3 x^{2}-y^{2}=3$ passing through the centre of the circle is equal to $......$
A square $ABCD$ has all its vertices on the curve $x ^{2} y ^{2}=1$. The midpoints of its sides also lie on the same curve. Then, the square of area of $ABCD$ is
If $PQ$ is a double ordinate of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ such that $OPQ$ is an equilateral triangle, $O$ being the center of the hyperbola. then the $'e'$ eccentricity of the hyperbola, satisfies